Accueil > ... > Forum 29543

Japon ; trois réacteurs en fusion et cela ne fait même plus partie de l’actualité très médiatisée...

6 septembre 2015, 02:06, par Max

L’explosion de l’unité 3 de Fukushima Daiichi

Le 14 mars 2011, à 11 h 01 exactement, une explosion d’une rare intensité s’est produite dans le bâtiment du réacteur n° 3 (BR3) de la centrale nucléaire de Fukushima Daiichi. Selon la seule vidéo connue, l’explosion s’est manifestée en deux temps : une première explosion est visible sur le côté sud engendrant une flamme gigantesque et, moins d’une demi-seconde plus tard, une deuxième explosion se produit de manière verticale, générant un nuage aux couleurs sombres sur plusieurs centaines de mètres de hauteur.

Les images du bâtiment réacteur diffusées après cet événement montrent que le bâtiment a énormément souffert : s’il reste 3 niveaux de poutres de béton armé côté est, les 3 autres côtés ont disparu pour cette même hauteur correspondant aux niveaux 4F, 5F et CRF du bâtiment, soit une hauteur de 23 mètres de murs détruits sur un total de 46 m.

Jusqu’à présent, l’opérateur Tepco et tous les organismes officiels ont affirmé qu’il s’agissait d’une simple explosion d’hydrogène. Pourtant, d’autres hypothèses existent et c’est l’objet de cet article de les exposer et de les analyser. Après avoir présenté succinctement le réacteur, nous observerons objectivement ce qui s’est passé, puis nous présenterons les différentes hypothèses qui tentent d’expliquer ces évènements. Enfin, nous confronterons ces propositions avec les faits relevés et nous exposerons notre point de vue argumenté.

1. Présentation du réacteur n° 3

Le réacteur n°3 est un réacteur à eau bouillante de type Mark I (General Electric). Construit par Toshiba à partir de 1970, il a été raccordé au réseau en 1974 et mis en service en mars 1976. Dans le contexte de la catastrophe de Fukushima, sa particularité est qu’il est le seul des 6 réacteurs de la centrale de Fukushima Daiichi à avoir été chargé avec du MOX, combustible français composé d’oxydes d’uranium et de plutonium.
......./........
4.2. Hypothèse d’une explosion de vapeur

4.2.1. Eléments favorables
 Les conditions nécessaires à une explosion de vapeur sont là : le cœur a commencé à fondre 24 heures plus tôt. Sans aucun refroidissement, un corium s’était formé et remplissait le fond de la cuve. Malgré l’injection d’eau douce, puis d’eau de mer, la fonte du cœur (« meltdown ») a bien eu lieu. L’injection d’eau de mer a commencé le lundi 13 mars 2011 à 13h12. Deux heures plus tard, malgré l’addition d’eau, le niveau d’eau dans la cuve du réacteur n’avait pas augmenté, ce qui laisse penser qu’il y avait déjà une fuite et que l’eau descendait directement dans le fond de l’enceinte de confinement où l’eau a pu s’accumuler. Si le fond de cuve a lâché, le corium a pu tomber dans cette eau et provoquer une explosion de vapeur.

 Les éléments observés démontrent qu’une explosion a eu lieu à l’intérieur de l’enceinte de confinement : déformation du puits de cuve au niveau du joint avec la piscine d’équipement, déformation de la vanne entre le puits de cuve et la piscine de combustible, déplacement de la porte d’accès de l’enceinte de confinement, et peut-être aussi explosion des condenseurs sous l’effet de la pression.

4.2.2. Eléments défavorables

 Selon la coupe du réacteur, il existe un puits de drainage au fond de l’enceinte de confinement (« equipment drain sump »). Si cette installation était en état, l’eau a pu être évacuée par ce conduit et de ce fait, en l’absence de masse d’eau, une explosion de vapeur n’a pas pu se produire. Toutefois, cette évacuation a pu aussi être bouchée par du corium puisque c’est cette matière qui est arrivée en premier en fond d’enceinte de confinement après avoir percé la cuve. C’est cette hypothèse qui est privilégiée par Tepco en 2011, comme le montre le schéma suivant : puisard rempli de corium.

4.4. Hypothèse d’une explosion due à un accident de criticité instantanée dans la piscine de combustible

4.4.1. Eléments favorables

 La vidéo montre que la première explosion se situe dans l’angle sud-est du BR3, là où se trouve la piscine de combustible.

 La photo aérienne du BR3 montre qu’il y a eu une explosion à l’endroit de la piscine.

 La double poutre n° 5, la seule à avoir été désolidarisée entièrement de la toiture, se trouvait juste au-dessus de la piscine de combustible

 Cette explosion a produit une forte chaleur qui a tordu les poutrelles métalliques du toit.

 Le nuage 3a, qui initie la grande explosion verticale, se situe exactement au-dessus de la piscine de combustible.

 Le nuage qui est propulsé à 300 mètres d’altitude n’a pas pu être guidé par les murs du BR3 car ceux-ci étaient déjà détruits par la première explosion. Les murs de la piscine de combustible d’une profondeur de 11,80 mètres ont pu jouer ce rôle.

 La machine de réapprovisionnement en combustible qui était positionnée sur la piscine a été projetée en l’air sous l’effet d’une explosion provenant d’en dessous d’elle et est retombée dans la piscine.

 L’endroit le plus chaud de la piscine le 20 mars 2011 correspond à l’emplacement supposé de l’explosion, c’est-à-dire là où il y a eu le moins de retombée de matériel (effet cratère).

 Tepco n’a jamais diffusé de photos des assemblages de la piscine à l’endroit le plus chaud.

 Des morceaux de combustible nucléaire ont été trouvés près du BR2 et jusqu’à plusieurs kilomètres de la centrale de Fukushima Daiichi.

 Des poussières de combustible de Fukushima ont été retrouvées partout dans le monde : de l’uranium à Hawaii et sur la côte ouest des Etats-Unis, du plutonium sur place mais aussi en Lituanie, de l’américium en Nouvelle Angleterre et sur la Côte Est.

 De la poussière noire qui se forme au sol près de la centrale de Fukushima est composée de produits de fission dont les césiums 134 et 137 et le radium 226.

5. Conclusions prenant en compte les faits et les critiques

Tout d’abord, il faut s’en tenir aux faits avérés.

5.1. Il s’est produit plusieurs explosions

Il faut se rendre à l’évidence qu’on ne peut pas expliquer « l’explosion » du BR3 de manière simpliste comme voudrait l’imposer la version officielle depuis 4 ans. L’analyse de l’évènement démontre qu’il y a eu plusieurs phases visibles qui impliquent l’existence de plusieurs explosions en l’espace d’une demi-seconde :

 Phase 1 (instant T) : explosion principalement sur le côté sud-est avec destruction du toit

 Phase 2 (T + 0,0334 s) : production d’une flamme jaune-orange sur le côté sud-est

 Phase 3 (T + 0,0668) : destruction du toit et des murs de l’angle nord-ouest

 Phase 4 (T + 0,33 s) : formation d’un nuage au-dessus de la piscine de combustible

 Phase 5 (T + 0,43 s) : formation d’un nuage au-dessus du côté nord-ouest

5.1.1. Une explosion s’est produite dans la piscine de combustible

Nous avons vu dans le chapitre 4.4 qu’il y avait 12 éléments favorables à l’explosion de la piscine de combustible contre 1 défavorable. S’il fallait ne retenir qu’un seul élément favorable, c’est que du combustible nucléaire a été retrouvé à l’extérieur de la centrale. Comme le puits de cuve est resté fermé, ce combustible ne peut pas provenir du réacteur. Il provient donc de la piscine de combustible. Comme personne ne l’en a extrait, il s’est donc bien produit une explosion dans la piscine de combustible qui a projeté certains éléments à l’extérieur.

Le deuxième facteur est la nature du MOX, combustible qui contient un mélange d’oxydes d’uranium et de plutonium non prévu initialement pour être utilisé dans ce réacteur. Ce combustible est plus instable que celui à l’uranium simple. Un troisième facteur a pu jouer également : une explosion d’hydrogène aurait provoqué une pression sur l’eau et les barres de combustible, ce qui aurait soit modifié leur géométrie initiale, soit favorisé une réaction en chaîne par la compression des bulles de vapeur.

Immédiatement après cette explosion, à notre connaissance, aucune photo ne montre de panache de vapeur sortir de la piscine de combustible, comme si elle avait perdu une grande partie de son eau. Pour comparaison, la piscine du BR4 a longtemps émis un panache de vapeur, indiquant que le combustible continuait à se refroidir en faisant évaporer son eau de refroidissement. Après l’explosion du BR3, l’inquiétude était forte pour sa piscine de combustible qui devait être impérativement arrosée. Les opérations de largage d’eau par hélicoptère ont commencé dès le 18 mars 2011.

En ce qui concerne le seul élément défavorable, à savoir que s’il y avait eu un accident de criticité, tout le combustible aurait été endommagé, nous pensons que ce n’est pas forcément le cas. A notre connaissance, la disposition des 566 assemblages dans la piscine de combustible n’a jamais été diffusée par Tepco. Il est possible que l’accident de criticité se soit produit à un endroit où la géométrie était favorable à cet évènement et que les assemblages situés sur les côtés de la piscine, séparés par des racks vides, n’aient pas été affectés. Nous rappelons que Tepco n’a diffusé que les photos des assemblages périphériques, ce qui nous empêche de vérifier cette hypothèse.

L’hydrogène n’ayant pas pu exploser dans l’eau de la piscine car il lui faut de l’oxygène gazeux, l’explosion ne peut s’expliquer que par un accident de criticité.

Ce n’est pas la première fois qu’un accident de criticité se produit avec du combustible nucléaire. Depuis 1945, l’IRSN en a recensés 39 qui sont survenus sur des réacteurs de recherche et sur des assemblages critiques dans des laboratoires.

Les accidents de criticité les plus courants durent un certain temps, jusqu’à ce que les conditions de la réaction en chaîne ne soient plus réunies. Par exemple, l’accident de Tokaï Mura (Japon, 1999) a duré 20 heures. Dans le cas de l’explosion de la piscine du BR3, Arnie Gundersen parle de criticité instantanée. C’est-à-dire que les conditions nécessaires à la réaction en chaîne ne durent qu’un instant. Mais cet instant suffit à provoquer une énergie phénoménale vu l’importance de la masse de combustible mise en jeu (97 tonnes). Le journal officiel donne la définition de la criticité instantanée : « Criticité qui serait atteinte sous l’action des seuls neutrons instantanés et conduirait à une situation accidentelle grave ».

On peut se demander pour quelle raison cet accident a pu se produire dans une piscine de combustible dont la géométrie a été étudiée pour que cela n’arrive pas. Comme tous les accidents, plusieurs facteurs ont probablement joué. Tout d’abord, il est possible que le « re-racking » ait été utilisé, c’est-à-dire un réarrangement des paniers, plus serré que celui prévu par les concepteurs, ce qui permet de stocker plus de combustible. Tepco a-t-il usé de cette pratique ? Les plans fournis par l’opérateur ne sont pas très clairs.

5.1.2. Une explosion s’est produite à l’intérieur de l’enceinte de confinement

Plusieurs observations énoncées dans le chapitre 2 conduisent à conclure qu’une explosion s’est produite à l’intérieur de l’enceinte de confinement :

 La double porte entre la piscine de combustible et le puits de cuve a été détériorée côté puits.

 Le mur de séparation entre le puits de cuve et la piscine d’équipement s’est déboîté de son logement et a été poussé, ce qui implique que le diamètre du puits de cuve s’est élargi.

 La porte de l’enceinte de confinement du niveau 1F a été déplacée de plus d’un mètre.

On pourrait rétorquer que c’est l’explosion de la piscine de combustible qui a provoqué ces effets. Or cela paraît peu vraisemblable car d’une part, la deuxième vanne de la porte entre la piscine de combustible et le puits de cuve a été poussée depuis le côté du puits de cuve et non pas depuis la piscine. D’autre part, l’explosion de la piscine de combustible n’a pas pu écarter le mur séparant la piscine d’équipement et le puits de cuve. Seule une explosion à l’intérieur de l’enceinte de confinement a pu élargir le diamètre du puits de cuve. Enfin, la porte inférieure de l’enceinte de confinement n’a pu être poussée que depuis l’intérieur.

 La radioactivité relevée au niveau de la dalle antimissile est très élevée : plus de 2 Sv/h en juillet 2013. Celle mesurée devant la porte de l’enceinte de confinement au niveau 1F l’est également : 0,87 Sv/h en novembre 2011.

Cette explosion a produit une sévère rupture de l’étanchéité de l’enceinte de confinement. On en a très bien vu les effets dans les semaines qui ont suivi les explosions avec ces importants panaches de vapeur qui s’échappaient du puits de cuve là où l’explosion avait fait des dégâts et ce débit de dose très élevé relevé par Tepco le 14 mars : 167 sieverts par heure au niveau de l’enceinte de confinement.

Il semble difficile qu’une explosion d’hydrogène, théorie soutenue par Tepco et le gouvernement, ait pu se produire dans l’enceinte de confinement tout simplement parce qu’il n’y avait pas d’oxygène à l’intérieur. En effet, l’eau bouillante du cœur a produit de la vapeur d’eau qui a envahi l’ensemble de l’enceinte de confinement. Cette vapeur d’eau qui sort sous pression est visible sur une photo 3 minutes après l’explosion (cf. figure 38). Par ailleurs, selon une analyse de l’IRSN en 2012, « l’enceinte de confinement est remplie d’azote, un gaz inerte. A ce stade, il n’y a pas de risque ».

Il nous semble qu’une explosion de vapeur au sein de l’enceinte de confinement peut expliquer les dégâts observés. Suite à l’explosion qui s’est produite dans la piscine de combustible, l’onde de choc a pu secouer et fracturer la cuve fragilisée par la chaleur intense et un gros paquet de corium a pu tomber dans le fond de l’enceinte de confinement où se trouvait de l’eau. La vaporisation quasi instantanée d’une grande partie de cette masse d’eau a pu faire augmenter la pression subitement avec les dégâts que l’on connaît.

L’explosion de vapeur est un accident extrêmement redouté par l’industrie nucléaire et fait l’objet de nombreuses études. L’EPR, qui aurait dû être le réacteur du futur mais qu’Areva n’a pas encore réussi à construire, est sensé justement corriger cette faiblesse des réacteurs nucléaires actuels : le récupérateur de corium permettrait, en théorie, d’éviter l’explosion de vapeur.

5.2. Proposition de déroulement des explosions

Au vu des faits exposés et de leur analyse, nous proposons maintenant notre compréhension du déroulement de ces explosions qui ont eu lieu dans le BR3 de Fukushima Daiichi le 14 mars 2011.

 Phase 1 : De l’hydrogène s’accumule dans le niveau 4F à cause peut-être de tuyauteries défectueuses en rapport avec les condenseurs reliés directement à la cuve du réacteur, et dans les niveaux 5F-CRF à cause de la réaction zirconium-eau du fait de l’absence de refroidissement de la piscine de combustible.

 Phase 2 : Une explosion d’hydrogène se produit au-dessus de la piscine de combustible. L’onde de choc commence à détruire la partie la moins solide du BR3 : la toiture.

 Phase 3 : L’onde de choc arrive en premier dans l’angle sud-est du bâtiment, crée une grande ouverture dans le toit et laisse passer le mélange explosif à une vitesse supersonique en produisant une flamme jaune-orange.

 Phase 4 : Dans la direction opposée, l’onde de choc primitive augmentée de l’énergie de son rebond contre les murs de l’angle sud-est, rencontre l’angle nord-ouest quelques centièmes de secondes plus tard et le détruit.

 Phase 5 : Par l’intermédiaire des escaliers de service et du sas d’accès matériel, l’onde de choc provoque quasi simultanément une explosion d’hydrogène au niveau 4F, détruisant un tiers des murs extérieurs et des plafonds ; les piscines qui ont des structures renforcées ne semblent pas touchées.

 Phase 6 : Dans le même temps, l’explosion d’hydrogène du niveau 5F-CRF compresse les bulles de vapeur de l’eau de la piscine de combustible, le coefficient de vide devient subitement positif (9) et la réactivité de la fission nucléaire est soudainement accrue, produisant un accident de criticité instantanée.

 Phase 7 : La piscine de combustible subit alors un « flash boiling », une sorte d’explosion de vapeur due à l’énergie instantanée dégagée par l’accident de criticité, ce qui a pour effet d’éjecter une partie des barres de combustible à l’extérieur du BR3.

 Phase 8 : L’onde de choc de cette dernière explosion détache du corium, voire le fond de cuve en tout ou partie, qui tombe dans l’eau qui s’est amassée en fond d’enceinte de confinement.

 Phase 9 : La masse de corium d’une température de 2500 à 3000 °C vaporise instantanément une grande partie de l’eau dans laquelle elle tombe ; c’est une explosion de vapeur qui, sous la pression extrême qu’elle dégage, déforme l’enceinte dite de confinement et entraîne la perte de son étanchéité.

Remarque : étant donné que nous ne disposons d’aucun élément visuel de l’explosion qui s’est produite dans l’enceinte de confinement, nous ne savons pas à quel moment elle a eu lieu. Nous l’avons placée arbitrairement à la fin de la série mais elle pourrait tout aussi bien être l’élément déclencheur de la phase 2.

(9) En effet la compression de la vapeur la rapproche de la densité de l’eau, qui fait alors office de modérateur de neutrons lents – ceux qui sont favorables à la réaction de fission de l’uranium – ce qui accélère donc la réaction en chaîne. Dans les bulles de vapeur, les neutrons ne sont pas suffisamment ralentis, cela freine la réaction. Ces considérations sont valables dans le cas où l’eau est à la fois le modérateur et le fluide caloporteur, ce qui est le cas de tous les réacteurs de Fukushima.

Au terme de cette étude, nous mettons le contenu de cet article en discussion. Nous serons heureux si vous laissez des commentaires ou des critiques qui permettront d’améliorer la compréhension de ces explosions.

http://www.fukushima-blog.com/
extrait article

Un message, un commentaire ?

modération a priori

Ce forum est modéré a priori : votre contribution n’apparaîtra qu’après avoir été validée par un administrateur du site.

Qui êtes-vous ?
Votre message

Pour créer des paragraphes, laissez simplement des lignes vides.