Accueil > ... > Forum 38255

Que signifie E = mc² ? La loi physique la plus connue au monde expliquée par son auteur, Albert Einstein !

28 mars 2017, 16:01, par Robert Paris

La première démonstration par Einstein de la loi E = mc² se trouve dans l’exposé d’Einstein à la conférence de Salzbourg du 21 septembre 1909, exposé intitulé « L’évolution de nos conceptions sur la nature et la constitution du rayonnement » :

« Considérons un corps en suspension, libre de se mouvoir. Ce corps émet, dans deux directions directement opposées, la même quantité d’énergie sous forme de rayonnement. Ce faisant, il reste immobile. Notons Eo l’énergie du corps avant l’émission, E1 son énergie après l’émission et L la quantité d’énergie du rayonnement émis ; on a d’après le principe de conservation de l’énergie : Eo = E1 + L.

Considérons maintenant le corps et le rayonnement qu’il émet en nous plaçant dans un système de coordonnées par rapport auquel le corps se déplace avec la vitesse v. la théorie de la relativité donne alors le moyen de calculer l’énergie du rayonnement émis, pra rapport au nouveau système de coordonnées. La valeur que l’on obtient est : L’ = L divisé par racine de (1-v²/c²).

Puisque le principe de conservation de l’énergie doit également être valable par rapport au nouveau système de coordonnées, on obtient, en utilisant des notations analogues : E’o = E’1 + L divisé par racine de (1-v²/c²).

Par soustraction et en négligeant les termes en v/c d’ordre quatre et plus, il vient :

(E’o – Eo) = (E’1 – E1) + ½ Lv²/c².

Mais (E’o – Eo) n’est rien d’autre que l’énergie cinétique du corps avant l’émission de lumière et (E’1 – E1) n’est autre que son énergie cinétique après l’émission de lumière. Si l’on appelle Mo la masse du corps avant l’émission et M1 sa masse après l’émission, on peut écrire, en négligeant les termes d’ordre supérieur à deux :

½ Mo v² = ½ M1 v² + ½ L v²/c²,

Soit encore :

Mo = M1 + L/c²

D’où L = (Mo – M1) c² où Mo – M1 est la diminution de la masse inerte du corps lors de l’émission.

Il en ressort que l’énergie interne du corps égale masse multipliée par le carré de la vitesse de la lumière : E = mc².

La masse inerte d’un corps diminue donc lors de l’émission de lumière. L’énergie cédée figure ici comme une partie de la masse du corps. On peut aller plus loin et conclure que chaque gain (resp. perte) d’énergie s’accompagne d’une augmentation (resp. diminution) de la masse du corps considéré. Energie et masse apparaissent donc comme des grandeurs équivalentes, tout comme la chaleur et le travail mécanique.

La théorie de la relativité a donc changé nos conceptions sur la nature de la lumière dans la mesure où la lumière n’y est pas conçue comme résultant d’états d’un milieu hypothétique, mais comme quelque chose qui existe de façon autonome, au même titre que la matière.

Dans cette théorie, la lumière a en outre cette caractéristique – qu’elle a également en théorie corpusculaire de la lumière – de transférer de la masse inerte du corps émetteur au corps absorbant. La théorie de la relativité n’a rien changé à notre conception de la structure du rayonnement, et en particulier à notre conception de la répartition de l’énergie dans l’espace traversé par un rayonnement. Je crois cependant qu’en ce qui concerne cet aspect de la question, nous sommes au seuil d’une évolution dont on ne peut encore saisir la portée, mais qui est sans aucun doute de la plus haute importance.

Un message, un commentaire ?

modération a priori

Ce forum est modéré a priori : votre contribution n’apparaîtra qu’après avoir été validée par un administrateur du site.

Qui êtes-vous ?
Votre message

Pour créer des paragraphes, laissez simplement des lignes vides.